Novelty Detection in Machine Vibration Data Based on Cluster Intraset Distance

نویسنده

  • Dubravko Miljković
چکیده

Traditional methods for condition monitoring of machinery are based on detecting situations when values of features extracted form measurement data leave predetermined bands consistent with normal machine operation. Design of such systems requires considerable amounts of measurement data describing machinery failure modes that are generally very difficult to obtain due to large number of failure examples necessary. Novelty detection is the identification of new or unknown data or signal that a machine learning system is not aware of during training. Assumption is that in case of impeding failure, new previously unseen measurement data will appear. In this paper method of novelty detection in machine vibration data is described based on clustering of features extracted from measurement data. During training system discover main operational regimes of machine and assign to them clusters of feature data. Later, during machine exploitation, by comparing intraset distances within cluster members with closest distance of new example to cluster centers, system is able to detect abnormal new measurement data that were not known at the time of training the model. Method is presented on car engine vibration data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Monitoring of Gas Turbine Engines: Machine-Learning Approaches and Their Challenges

In this study, condition monitoring strategies are examined for gas turbine engines using vibration data. The focus is on data-driven approaches, for this reason a novelty detection framework is considered for the development of reliable data-driven models that can describe the underlying relationships of the processes taking place during an engine’s operation. From a data analysis perspective,...

متن کامل

Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra

A system has been developed to extract diagnostic information from jet engine carcass vibration data. Support Vector Machines applied to novelty detection provide a measure of how unusual the shape of a vibration signature is, by learning a representation of normality. We describe a novel method for Support Vector Machines of including information from a second class for novelty detection and g...

متن کامل

ADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS

In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016